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Abstract

In this paper, a new model of beam was built to study and simulate the buckling behavior of function graded beam. All equations of motion
are derived using the principal of the minimum total potential energy and based on Euler-Bernoulli, first and high order shear deformation
Timoshenko beam theory. The Navier solution is used for simply supported beam, and exact formulas found for buckling load. The properties
of material of FG beam are assumed to change in thickness direction by using the power law formula. The dimensionless critical buckling
load is calculated analytically by the FORTRAN program and numerically by ANSY S software. In the beginning, the analytical and numerical
results are validated with results available in previous works and it is also has very good agreement in comparison with and some researchers.
In the present study, the lower layer of the graded beam is made up of aluminum metal. As for the properties of the rest of the layers, they are
calculated based on the modulus ratios studied. The effect of length to thickness ratio, modulus ratio, and power law index on the dimensionless
critical buckling load of function graded beam calculating by FORTRAN and ANSYS programs are discussed. The numerical analysis of

function graded beam offers accurate results and very close to the analytical solution using Timoshenko Beam theory.
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1. Introduction

Functionally graded beam (FGB) is a group of mixtures, in
which the properties of material such as modulus of elasticity,
density, poisons ratio, etc... varies in different direction,
thickness, longitudinal, and in both directions respectively.
Usually, FGB, consist of ceramic and metal. The ceramic can
resist high thermal loading and the metal has excellent
structural strength. These types of materials have been used in
many fields, such as such as aerospace, mechanical, and
medical sectors, to reduce the concentration and residual of
stress, and to improve connection strength. In the literature,
various numerical and analytical methods are proposed to
analyze the buckling behavior of FG beams.

In 2007, Shariat and Eslami [1] presented buckling analysis
of rectangular thick FG plates under (uniaxial, biaxial
compression, and biaxial compression and tension)
mechanical and thermal loads. In 2009, Metin [2] studied the
buckling of nano-beam by using anon local beam theory. In
2012, Farhatnia et al. [3] employed FOSDT and GDQM for
the analysis of buckling for FG thick beams. In 2013, Li et al.
[4] obtainable an analytical process with various boundary
conditions to find buckling loads of FG Euler and Timoshenko
beams. Kien et al. [5] used the analytical solution for buckling
behavior of axially loaded FGM beams. Lei et al. [6] presented
the analysis of buckling for FG carbon nanotube (FG-CNTRC)
plates under different in-plane mechanical loads by the method
of element-free kp-Ritz. The critical buckling load of axial

function graded beam by Jowita [7] in 2014 are studied.
Saljooghi et al. [8] analyzed buckling load for function graded
beam by using the Reproducing Kernal practical method
(RKPM). In 2015 Trung-Kien et al. [9] presented a new shear
deformation with higher degree for buckling analysis for
isotropic and functionally graded sandwich beams.

Uysal and Kremzer [10] studied the behavior buckling of
short cylindrical function graded polymetric material (FGPM
s). Vo et al. [11] developed a three-dimension theory to
analysis the buckling of functionally graded sandwich beams.
In 2016, the behaviour of buckling of post-buckling of
multilayer function graded nano composite beam reinforced
with a low content of graphene plates (GPLSs) resting on an
elastic foundation is investigated by Yang et al. [12].
Mohammad et al. [13] presented the buckling analysis of FG
Euler-Bernoulli nano-beam based on nonlocal elasticity.
Korosh and Abolfazl [14] presented buckling behavior of FG
nano-plate based on exponential shear deformation theory. In
2017, Noha et al. [15] presented a modified porosity to
analysis the buckling of a porous functionally graded beam.
Mitao et al. [16] presented the compressive buckling analysis
of functionally graded multi-layer grapheme nano platelet
(GPL) polymer composite plate with in the frame work of the
first shear theory of deformation. Kahya and Turan [17]
developed FE design for the buckling and vibration analysis of
FGB based on the first shear theory of deformation.

In 2018, Atteshamuddin and Yuwaraj [18] developed and
applied a simple modified exponential shear theory of
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deformation (ESDT) to analysis the buckling of graded beams
with different boundary conditions.

In 2019, Ashraf et al. [19] presented buckling behavior of
FG nanobeam basing on two-parameter elastic foundation
dependent on shear beam theory deformation with third degree
(TOSDBT). Nam et al. [20] presented a new kind of beam
depended on modified shear theory deformation with first
degree to study buckling behavior of FGB with different
thickness.

In 2020, Farshad et al. [21] studied the buckling of various
FG beam by various beam theories. To estimate the FG beam
behavior, the effect of aspect ratio, material distribution,
porosity index is studied. Zhicheng et al. [22] offered the
dynamic analysis of buckling for FG graphene nanoplatelets
(FG-GPLRC) arch subjected at its middle point to a step
central point load.

The aim of this paper is to developed a new model of beam
dependent on Euler, first and high order shear theory of
deformation. This model of beam is used for the analysis of
buckling for FG beam to demonstrate its effectiveness and
accuracy.

Thus, the present paper demonstrates the buckling
behavior of square FGB. The material varies along the
direction of thickness by using the power law form. The
motion equations of Euler and first and high order shear
Timoshenko FG beam are derived using the principle of
Hamilton.

2. Theory and formulation
2.1. Function Graded Beam FGB

In this study, a new FG beam model based on Euler, and
shear deformation theory with first and high order is
developed. This beam is modeled with length of L and square
cross section of (b x h) where (b) is equal to (h). Assume that
the FGB is made of two different materials, ceramic and
aluminum metal (E = 69 GPa, v = 0.23) in the upper and lower
surface respectively as shown in Fig. 1.

Ceramic material can be determined based on the elasticity
ratios that have been studied. The mechanical properties of
FGB as (modulus of elasticity E (z), modulus of rigidity G (z),
and Poisson ratio are varied continuously from one surface to
another through the thickness direction according to the rule of
mixture, it can be expressed as: [23], [24], [25].

PtVt"l‘Pbe:l (1)
Vt"l‘Vb:l (2)
V—(+1y 3

Where (K) is non negative power law index parameter, it
presented the profile of material change in thickness direction
of FGB. The symbols of (t and b) represent the properties of
top and bottom material when (z = h/2 and z = - h/2)
respectively. The modulus of elasticity can be expressed by
power law form as:

1 k
EQ=E-E) (s +3) + B )

z
M
Ceramic
h/f2
0
-hf2 > X
L Aluminum metal

s L
T Cal

Fig. 1 geometry and loading of FG beam.

2.2. Governing Equations

In this section, the governing equations of Euler beam and
first and high order Timoshenko beam are derived.

2.2.1. Timoshenko Beam Theory (TBT)

Assuming the deformations of the beam are in the x-z plane
and U, V, and W, denoted to the displacement component
along x, y, and z respectively. The displacement field for
Timoshenko beam are taken as [26]:

0
Ux,zt) =u(x t) — 26_2} +1(@) xu;(x, 0 (5)
V(x, z, 1) =0 ©)
W(x, z, ) =w(x, f) @)
Where the axial and transverse middle surface

displacement along X and Z direction are u (x, t) and w (x, t)
respectively. The effect of transverse shear strain on the
middle surface of the FGB is presented by the unknown
function uy (x, t). The shape function is presented by f (z) that
used to determine the distribution of the transverse shear strain
and stress through the thickness and take deferent form as
follow:

For CBT: classical beam theory (EULER): f(z) =0

For FSDBT: first order shear deformation theory: f (z) =z
For PSDBT: parabolic or high order shear deformation theory:

473
@)= 1
For buckling as we didn’t need to kinetic energy, so we
are canceled the effect of time:
The nonzero normal strains (ex), and (yx) is shear strain of
this beam are calculated as:

. ou o'w (7 )6u1) g
= o \Fan? VZ& ®)
_aw N <df )+dw
™ dx dzul dx
df
Ve = ©

By applying the principle of minimum potential energy, the
variation of total potential energy (the difference between the
strain energy and external work) must be equal to zero.
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5H:5(Uint_ Wext) (10)

d*w o duy s
O(Uint) = Nxé——Mﬁ""M 5;+Q x duy |dx (11)

2

! dw
5(Wext) :L {(q X ow +_f>< (Su) + <P X 2

X 5w>} dx (12)

Where Uin is the strain energy, q is the distributed or
concentrated load, f is the distributed axial force, P is axial
component force (buckling load).

N and M are the classical well-known axial force and
bending moment stress resultant, Q * and M ° are stress
resultant associated with stress deformation. These stress
resultants are defined as:

N:fdxdi
M:fzogcdi

Mv=ff; o, dA

0’ Jlill2<xa

Where Ks is the factor of shear correction and equal to
(5/6), but it is equal to one for high order shear deformation
theory. By applying the Hooks law in eq. (13), the stress
resultant is presented in term of the strain we get:

K d4 (13)

du d2w duy
N= Alld — By e B o (14)
du d*w du,

M:Bua—an*”FuE (15)

) du d’w du,
M‘:Eua—Fuw*‘HuE (16)
0’ =A4ss w1 K, (17)
Where,

df )’
A55 = GZ dx dA
du
N Ay By Eny 0 lew
s X dx? (18)
M’ Ev Fu Hy 0 [ @0
0° 0 0 0 s duy
\ & )/
Uy

Where,
(AllsBllaDllvEllaFll’Hll): fEZ (I,Z,Zz, fés(z.f;):
17y d4 (19)

For buckling problem, the external load g and f are set to
zero. By substitute equations (11) and (12) into equation (10),
we get:

[l

d*w d*w
—M—+M° 5—+Q 5u1) (

2 I 7 5W>}dx=0 (20)

Integrating by part and setting the coefficient Ju, ow and
Jus to zero lead to the following:

dN

—5—0 (21)
d*M  d*w

aMm’

—=0=0 (23)

All equations of motion can be obtained in terms of
displacement by substituting N, M, M ®, and Q ° from eq. (18)
in to eq. (21), (22), (23) as follows:

d?u d3w d?u,

A F_Blldx—3+Ell ) =0 (24)
d3u d*w d3u, dzw_

Bu = —Du oz P o~ P 75 =0 (25)
d2u dw a2,

Ey == o = Fy ) +Hy ey —Assu; =0 (26)

2.2.2. Euler-Bernoulli Beam Theory

For Euler beam, f (z) equal to zero and the displacement
field are given as:

U,z ) =ulx, 1) — Zz—‘: 27)
V(x, 2 ) =0 (28)
W(x, z, t) =w(x, 1) (29)

The normal strain (&) of Euler-Bernoulli beam theory is
expressed as:

(30)

The bending moment and axial force for Euler Bernoulli
beam theory can be obtained with the similar steps that was
applied for Timoshenko beam theory as follow:

11 / 11 I 2 ( )
M=B D 2W 32
11 / 11 5.7 ( )
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du

N1 _ [4n Bll] dx

[M 1By Dul| d?w 3)
dx?

The equations of motion can be obtained in terms of the
displacements by substituting for N, M from eq. (31) and (32)
in eq. (21) and (22) as follow:

d?u d3w
AIIP_BHW:O (34)
d3u d*w d?w

B”W_D”W_PWZO (35)

3. Analytical solution for buckling problem

For simply supported FGB, the analytical solution is
determined by using the Navier solution. The function of
displacement is expressed as product of undetermined
coefficient and known trigonometric function to satisfy the
governing equation. The following displacements are assumed
as [27]:

N
u(x)= U, cos (ax) (36)
N
w(x)= W, sin (a x) (37)
N
u; (x)= G, cos(ax) (38)
9L

where (Un, Wiy, Gn) are the unknown Fourier coefficients
to be determined for each n value, and & = n z/L.

3.1. Timoshenko Beam Theory

By substitute the eq. (36), (37), (38) and their derivative in
eq. (24), (25), (26), the results as following:

(= azAu) (& Byy) (= Ey) U, [0
(@ By) (—d* Dy +a*P) (Fyy o) Wal= 0]
(_ 0!2 Ell) (Fll 0(3) (_ aZ Hll _Asx Ks) G" 0

(39)

The critical buckling load is found by setting the
determinant of the coefficient matrix in equation (39) to zero.
For Timoshenko beam theory the critical buckling load is
obtained as:
pP= [En o*(Bu Fi
— Eni D) + B 0‘2(311(0‘2 Hyy + K, Ag) + (o Fyy Ell)) +
a2 All (Dll(oc2 Hll +Ass Ks)

~@ F,O))/ [0 @ By 44 K) - o B (40)

3.2. Euler-Bernoulli Beam Theory

It should be noted that for Euler-Bernoulli beam theory the
value of (Gn, Hi1, F11, E11) is zero. By substituting the eq. (36)
and (37) and their derivative in eq. (24) and (25) we get the
following:

(- 4,)
(a® Byy)

(& Byy) ] Un] 0

= 41

(—a* Dy, +a? P)| LW, [0] 4D
The critical buckling load is found by setting the
determinant of the coefficient matrix in equation (46) to zero.
For Euler FGB theory, the critical buckling load is obtained as:

P=0? (4, Dy, — B\ ")y, (42)

4. Finite element method

Two-dimensional simple supported beam with ten layers is
drawn in ANSY'S software with element of (SHELL281). The
FGB material properties changes due to the power law form in
thickness direction. It has eight nodes with six degrees of
freedom at each node: translations in the X, y, and z directions,
and rotations about the X, y, and z-axes as shown in Fig. 2 (a).

SHELL281 is well-suited for linear, large rotation, and/or
large strain nonlinear applications. Also, its accounts for
follower (load stiffness) effects of distributed pressures.

SHELL281 can be used for layered applications for
modeling composite shells or sandwich construction. The
accuracy in modeling composite shells is governed by the first
order shear-deformation theory (usually referred to as
Mindlin-Reissner shell theory). The element formulation is
based on logarithmic strain and true stress measures. The
element kinematics allow for finite membrane strains
(stretching). However, the curvature changes within a time
increment are assumed to be small [28].

In this model there were ten layers and about (2500-8500)
elements and the number of nodes were about (6370-25000)
nodes as shown in Fig. 2 (b).

Fig. 2 (a) Element Geometry, (b) Meshing of FG Beam.
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5. Numerical results and discussion
5.1. Verification

To verify the proposed beam models, the comparison
among present models (analytical and numerical models) with
Simsek and Yurtcu [27] and Farhatnia and Sarami [29] is
investigated.

Considering a simply support beam with length L = 1 m,
under concentrated load po, and material properties of metal in
the bottom surface and alumina in top surface are [29]:

Al (metal): Ep = 70 GPa, w, = 0.23, pp = 2700 kg/m3
Al,O3(alumina): E; = 380 GPa, vt = 0.23, p; = 3800 kg/m?®
The dimensionless buckling of FG beam is given by [27]:

P 1 (43)

The dimensionless critical buckling load for simple
supported FGB of present work is compared with Simsek and
Yurtcu [27] and Farhatnia and Sarami [29] as shown in Tables
1 and 2, when the power index and aspect ratio are equal to (0,
0.5, 1, 2, 5, 10) and (5 and 10) respectively.

Table 1. Validation for dimension less critical buckling load of S-S FGB

when L/H =5.
Authors Index (k) for Eq. (3)
0 05 1 2 5 10

EBT [29] 53.58 34.73 26.7 20.84 17.62 16.05
RSDT [29] 48.83 31.97 24.68 19.24 16.03 14.43
RZT [29] 48.98 34 26.64 20.93 17.77 16.25
EBT [27] 53.5235 346962 | 26.67831 | 20.81757 |17.60485 | 16.0354
TBT [27] 48.7882 31.9364 | 24.66323 | 19.22642 |16.00867 | 14.4133

Present (EBT) 53.5235 34.6962 26.67831 | 20.81757 | 17.60485 16.0354

Present
(TBT or FSDBT)

Present (HSDBT)

48.7882 31.9364 2466323 | 19.22642 | 16.00867 14.4133

47.7931 33.3180 28.10264 | 20.94933 | 17.47448 16.2190

Present ANSYS | 49.3478 32.2157 | 25.4539285| 19.637142 [16.521428 | 14.3335

Table 2. Validation for dimension less critical buckling load of S-S FGB

when L/H = 10.
Index (k) for Eg. (3)
Authors
0 05 1 2 5 10
EBT [29] 53.57 34.73 26.7 20.83 17.62 16.05
RSDT [29] 52.31 33.99 26.17 20.41 17.19 15.61
RZT [29] 52.1 34.58 26.76 20.96 17.78 16.25
EBT[27] | 5352355 | 34.6962 | 26.67831 | 20.81757 | 17.60485 | 16.03548
TBT[27] | 5225561 | 33.96248 | 26.14429 | 2039559 | 17.17669 | 1550666
lerzeé?r”)t 5352355 | 34.6962 | 26.67831 | 20.81757 | 17.60485 | 16.03548
Present
(TBTor | 5225561 | 33.96248 | 26.14420 | 20.39559 | 17.17669 | 1559666
FSDBT)
Present
(HoDBT) | 5229988 | 3334747 | 2812501 | 2396894 | 1950194 | 16.25473
Present 53988 | 33.84171 | 2629028 | 20.57485 | 16.82245 | 1515223
ANSYS : : : : - :

From Tables (1) and (2), it can be found the following
points:

1. For EBT, the present model is very close to the model of
Simsek and Yurtcu [27] and Farhatnia and Sarami [29].
The maximum percentage of discrepancy is (0.107 %)
when the power law index is (2) for any (L/H) ratio.

2. For FSDBT or TBT, the maximum percentage of
discrepancy between the present model and Farhatnia and
Sarami [29] is (0.133 %) for any (L/H) ratio. While that
results are very close to the results of Simsek and Yurtcu
[27] for all (L/H) ratio.

3. For HSDBT, the maximum percentage of discrepancy
between the present study and Farhatnia and Sarami [29]
are (5.2 % and 8.8 %) at (5 and 10) L/H ratio respectively.

4. For ANSYS model, the maximum percentage of
discrepancy between present ANSYS model comparing
with EBT, RSDT, and RZT of Farhatnia and Sarami [29]
are (10.6, 3.1, and 10.6) % at L/H is (5) and (5.5, 3.2, 6.7)
% at L/H ratio (10) when the power law index is (0, 0.5, 1,
2, 5, and 10) respectively. From these results may be
conclude that the ANSYSS of present model is very close to
the RSDT of Farhatnia and Sarami [29].

From the previous comparisons, the present analytical and
numerical models give a very good agreement with available
literatures.

5.2. Results

The dimensionless critical buckling load of simply support
FGB with different power index value (k =0, 0.1, 0.2, 0.4, 0.6,
0.8, 1, 5, 10, 20, 30, 50 and 10000), different (L/H) ratio (5,
10, 20, 50 and 100), and with different modules ratio (0.25,
0.3333, 0.5, 0.75, 1, 1.3333, 2, 3 and 4) is calculated in this
section. The lower layer of the graded beam is made up of
aluminum metal. As for the properties of the rest of the layers,
they are calculated based on the modulus ratios studied.

To illustrate the effect of L/H ratio on dimensionless
critical buckling load of FGB based on CBT for different
modulus ratio. Fig. 3 shows that the aspect ratio has not effect
on the non-dimension buckling. But, by TBT that is a great
effect of L/H ratio on the dimensionless buckling as shown in
Fig. 4. Generally, from these figures can be determined that
with increasing L/H ratio at all value of modulus ratio, the non-
dimension critical buckling load increases.

To present the effect of modulus ratio (modulus of top
material / modulus of bottom material) and power law index
on non-dimension critical buckling load of FGB with different
four present models and all L/H ratio, Figures 5 to 9 show that
the dimensionless buckling increase when the modulus ratio
increases at the same value of power index and by using all
theories. When the value of modulus ratio is less than one, the
modulus of top material (ceramic) is smaller than that of
bottom material (Aluminum metal) and any increasing in
power index leads to increase the value of modulus of
elasticity and increase the dimensionless buckling. In the other
hand when the modulus ratio is greater than one, the modulus
of top material is greater than that of bottom material and any
increasing in power index lead to decrease the modulus of
elasticity and then decrease the dimensionless buckling. This
is due to the fact that the large value of index lead to rich metal
in comparison with ceramic, this make FGB more flexible.

Figures 10 to 14 illustrate the effect of the four present
deformation theory on dimensionless buckling with different
value of power index and different value L/H ratio. From these
results it can be seen that the dimensionless buckling of CBT
is greater than that of TBT and HSDBT. Its mean that the shear
deformation theory lead to decrease the dimensionless critical
buckling load. It can be seen also the results of ANSYS
program are very close to the TBT that have been derived in
this study.
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Fig. 11 The dimensionless critical buckling load of FG beam with (L/H = 10)
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Fig. 13 The dimensionless critical buckling load of FG beam with (L/H = 50)

for all theories.
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Fig. 14 The dimensionless critical buckling load of FG beam with
(L/H = 100) for all theories.

6. Conclusions

In the present paper, the shear deformation Timoshenko
beam theory with first and high order degree was derived. The
non-dimension critical buckling load is investigated and
simulated analytically and numerically. This FGB model can
be analysis the buckling behavior by make a comparison
between its results and the numerical results from ANSYS
software and with the other published paper. Several
parameters such as power index, L/H ratio, different types of
deformation theories and different E ratio on non-dimension
critical buckling load are studied. From the above results, we
can conclude the following:

1. When the value of power law index remains constant, the
dimensionless critical buckling load will increase when the
elasticity ratio increase.

2. As the power law index increases, the dimensionless
critical buckling load increases when the modulus ratio is
less than one, decrease when the modulus ratio is greater
than one, and remain constant when modulus ratio equal to
one.

3. The ratio of length to thickness does not have any effect in
the case of the CBT, but its effect is clear in the case of
TBT that have been derived in this study.

4. The dimensionless critical buckling load increases with
increasing the length to thickness ratio in TBT that have
been derived in this study.

5. The results of the ANSYS program are very close to TBT
that have been derived in this study.

6. The laws of dimensionless critical buckling load in the
research Simsek and Yurtcu [27] were programmed in the
Fortran program for the present work according to the
studied modulus ratios, and the results were close to the
theorems that were derived and obtained from this study.
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